Photochemistry of Tricarbonyl(η⁵-cyclopentadienyl)hydrido Complexes of Molybdenum and Tungsten and of Dicarbonyl(η⁵-cyclopentadienyl)-(ethylene)hydridotungsten in Solution and in Frozen Gas Matrices at 12 K†

Khalil A. Mahmoud and Antony J. Rest *

Department of Chemistry, The University, Southampton SO9 5NH Helmut G. Alt Laboratorium für Anorganische Chemie, Universität Bayreuth, D-8580 Bayreuth, West Germany

The photochemical reactions of $[MH(CO)_3(\eta^5-C_5H_5)]$ complexes (M = Mo or W) and of trans-[WH(CO)₂(C₂H₄)(η^5 -C₅H₅)] have been studied by a combination of conventional solution and low-temperature (12 K) matrix isolation techniques. In pentane solution the photolysis of [MH(CO)₃- $(\eta^5-C_5H_5)$] complexes proceeds with the formation of the dimeric complexes [{M(CO)₃($\eta^5-C_5H_5$)}₂], $[{M(CO)_2(\eta^5-C_5H_5)}_2]$, and $[{WH(CO)_2(\eta^5-C_5H_5)}_2]$ together with evolution of H₂ and CO. The photo-induced reactions with N₂ and C_2H_4 lead to monosubstitution products but only [WH(CO)₂- $(C_2H_4)(\eta^5-C_5H_5)]$ is stable enough at room temperature for it to be fully characterised. The olefinhydrido-complex [WH(CO)₂(C₂H₄)(η^5 -C₅H₅)] exists only as the *trans* isomer at room temperature. Under thermal and especially photochemical reaction conditions the olefin ligand in $[WH(CO)_2(C_2H_4) - WH(CO)_2(C_2H_4)]$ $(\eta^5 - C_5 H_5)$] can be replaced by CO, N₂, PMe₃, and tetrahydrofuran (thf) ligands leading to substitution products with different thermal stabilities. The photolysis of $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ in pentane solution in the absence of potential ligands leads to the loss of the olefin and the formation of $[\{WH(CO)_2(\eta^5-C_5H_5)_2\}_2]$. In Ar and CH₄ matrices at 12 K u.v. irradiation results in dissociative loss of one of the CO ligands to give the co-ordinately unsaturated 16-electron species [MH(CO)₂- $(\eta^5 - C_5 H_5)](M = Mo \text{ or } W)$. This process was reversed using visible light, *i.e.* there is an equilibrium (i). The reactivity of the [MH(CO)₂(η^5 -C₅H₅)] species was apparent in their reactions with N₂ and C₂H₄

$$[MH(CO)_{3}(\eta^{5}-C_{5}H_{5})] \xrightarrow{h_{\nu}}{} [MH(CO)_{2}(\eta^{5}-C_{5}H_{5}] + CO$$
(i)

at 12 K to produce *trans*-[MH(CO)₂(N₂)(η^5 -C₅H₅)] complexes and both *cis* and *trans* isomers of [WH(CO)₂(C₂H₄)(η^5 -C₅H₅)] but only the *trans* isomer of [MOH(CO)₂(C₂H₄)(η^5 -C₅H₅)]. In CO matrices the formation of the radicals [M(CO)₃(η^5 -C₅H₅)] and HCO is indicative of photo-induced metal-hydrogen bond cleavage. The photolysis in ¹³CO matrices results initially in the formation of all possible [MH(¹³CO)_{3-n}(CO)_n(η^5 -C₅H₅)] (n = 0—3) derivatives indicating easy CO exchange. Ultimately bands of H¹³CO and ¹³CO-enriched [M(CO)₃(η^5 -C₅H₅)], species were observed. The identities of [MH(CO)₂(η^5 -C₅H₅)], [MH(CO)₂(N₂)(η^5 -C₅H₅)], and [M(CO)₃(η^5 -C₅H₅)] ispecies were confirmed by energy-factored force-field fitting procedures for the ¹³CO-enriched molecules. Upon u.v. irradiation of *trans*-[WH(CO)₂(C₂H₄)(η^5 -C₅H₅)] in CH₄ matrices the primary product is the *cis* isomer and this is followed by insertion of C₂H₄ into the W⁻H bond to generate the 16-electron species [W(CO)₂(C₂H₅)(η^5 -C₅H₅)]. A monocarbonyl complex, possibly [WH(CO)(C₂H₄)(η^5 -C₅H₅)], is the final product. In CO matrices, however, the olefin is substituted by CO, and the corresponding hydrido-carbonyl complex [WH(CO)₃(η^5 -C₅H₅)] is formed. The *cis* isomerisation and the insertion of C₂H₄ into a M⁻H bond are relevant to the understanding of hydroformylation reactions catalysed by transition metal hydrides.

Transition metal hydrido-complexes play important roles in a variety of reactions: (i) they provide hydrogens for organic or organometallic hydrogenation reactions; ^{1,2} (ii) olefins may insert into the metal-hydrogen bond generating alkyl derivatives,^{3 5} (iii) they represent efficient catalysts in hydroformylation reactions ⁶ and other catalytic processes; ^{7,8} (iv) they are highly reactive intermediates in the thermal or photoinduced β-hydrogen elimination process of transition metal alkyl complexes.⁹⁻¹¹ One reason for this versatile reactivity is the fact that the hydrido-ligand has only small steric requirements.¹² Since metal-hydrogen bonds are considered stronger than metal-carbon bonds,13 selective reactions can be expected for hydrido-carbonyl complexes. So far, however, photochemistry is only known for a few hydrido-complexes,¹⁴ e.g. $[\text{ReH}(\eta^5-C_5H_5)_2]$,¹⁵ $[\text{MH}_2(\eta^5-C_5H_5)_2]$ (M = Mo or W),¹⁶⁻¹⁹ $[MH(CO)_5]$ (M = Mn or Re),²⁰ $[CoH(CO)_4]$,²¹ $[IrClH_2$ -(PPh₃)₃], [IrH₃(PPh₃)₃],²² [RuClH(CO)(PPh₃)₃], [RuH₂(CO)- $(PPh_3)_3$], $[RuClH(CO)_2(PPh_3)_2]^{23}$ and $[OsH(CO)_2(n^5-C_5-$ Me_3)].²⁴ In order to gain more insight into the basic steps of the photochemistry of transition metal hydrido-complexes we chose the compounds $[MH(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) and an olefin derivative $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]^{10}$ for photolysis studies in different frozen gas matrices at 12 K. We compare those results with studies in solution, *e.g.* Hoffman and Brown ²⁵ have postulated that the facile thermal and photo-induced reactions of $[WH(CO)_3(\eta^5-C_5H_5)]$ with PBuⁿ₃ both proceed chiefly *via* radical intermediates rather than by CO dissociation.

Experimental

The starting materials $[MH(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) ²⁶⁻²⁸ and $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ ¹⁰ were prepared according to the literature methods; $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ was obtained as the *trans* isomer by the direct photo-induced reaction of $[WH(CO)_3(\eta^5-C_5H_5)]$ with ethylene. In a typical preparation 2 mmol (668 mg) of $[WH(CO)_3(\eta^5-C_5H_5)]$ was dissolved in n-pentane (300 cm³). A slow stream of

[†] Non-S.I. unit employed: 1 Torr = (101 325/760) Pa.

Compound	$v(CO) b/cm^{-1}$	$\delta(C_5H_5)$ ^c /p.p.m.	$\delta(M-H)$ ^c /p.p.m. [J(WH)/Hz]
[MoH(CO) ₃ (η ⁵ -C ₅ H ₅)]	2 018, 1 930	5.61	5.64
$[WH(CO)_3(\eta^5-C_5H_5)]$	2 015, 1 922	5.70	-7.40 [37.1]
trans-[MoH(CO) ₂ (thf)(η^{5} -C ₅ H ₅)]	1 930br, 1 827br	5.04	-4.69
trans-[WH(CO) ₂ (thf)(η^{5} -C ₅ H ₅)]	1 924, 1 830br	5.11	-4.67 [28.9]
cis -[WH(CO) ₂ (thf)(η^{5} -C ₅ H ₅)]	1 928, 1 830br	5.11	-4.86 [23.0] 4
trans-[WH(CO) ₂ (C ₂ H ₄)(η^{5} -C ₅ H ₅)]	1 961, 1 833	5.39	-5.66 (q) [2.9] °

Table 1. Spectroscopic data ^a for the complexes $[MH(CO)_3(\eta^5-C_5H_5)]$ and $[MH(CO)_2L(\eta^5-C_5H_5)]$ (M = Mo or W; L = thf or C_2H_4)

ethylene was bubbled through the solution and it was irradiated at -30 °C for 90 min. When nearly all the starting material had been consumed the reaction mixture was filtered over a frit covered with filter pulp, and the solvent was reduced to about 20 cm³. This solution was then cooled to -78 °C overnight yielding 250 mg (37%) of light brown crystals (decomp. 70 °C). Spectroscopic data are given in Table 1.

(i) Solution Studies.—All operations were carried out under nitrogen or argon using Schlenk techniques. The solvents were water free and freshly distilled. For photolyses a mercury high-pressure lamp (Hanovia L, 450 W) was used. The Duran glass of the Schlenk tubes acted as a filter for u.v. light giving $\lambda > 300$ nm. The n.m.r. spectra were obtained with a JEOL FX 90Q multi-nuclei Fourier-transform n.m.r. spectrometer and the i.r. spectra with a Perkin-Elmer 297 instrument.

Isolation and identification of the reaction products. Samples of $[MH(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) were photolysed at -30 °C in pentane solution. Gaseous compounds, *e.g.* CO, N₂, and C₂H₄, were bubbled through the solution during photolysis. Liquids, *e.g.* tetrahydrofuran (thf), were added before irradiation. The course of the reaction was monitored by i.r. and in some cases by n.m.r. spectroscopy. After photolysis the reaction mixture was filtered and n-pentane removed under high vacuum. Hydrogen-1 and carbon-13 n.m.r. spectra were then obtained. The thermal and photochemical reactions with $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ and potential ligands were performed in an analogous manner. The spectroscopic data for the products are presented in Table 1.

(ii) Matrix Studies .- Details of the cryostat, the i.r. and u.v.-visible spectrometers, irradiation source and filters for wavelength photolysis, and matrix gases have been described previously.^{5,29a} Matrices containing $[MH(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) and $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ were prepared by the slow spray-on technique, i.e. the vapour from the cooled starting material (ca. 10 °C) was co-condensed with matrix gas onto the cold CaF₂ window. Monomer isolation (ca. 1:2000) was ensured by having a substantially higher gas flow for the host matrix than for the complex to be isolated. Deposition was monitored throughout by running i.r. spectra of the matrix and checking that the half-width of the terminal CO stretching bands did not exceed ca. 2 cm⁻¹ and that there was no tailing of bands to lower wavenumbers. The ¹³C-enriched complex $[WH(^{13}CO)_{3,n}(^{12}CO)_n(\eta^5-C_5H_5)]$ was prepared by photolysing (290 $< \lambda < 370$ nm) the complex [WH(CO)₃(η^5 -C₅H₅)] in n-hexane solution (25 mg in 100 cm³) in an atmosphere of ¹³CO (200 Torr) for 2 h. The solvent was removed in vacuo and the hydrido-complex separated from the reaction mixture by sublimation at 30 $^{\circ}$ C (10⁻³ Torr).

Results

(i) Studies in Solution.—The pseudo-five-co-ordinated complexes $[MH(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) and $[WH(CO)_2-W$

 $(C_2H_4)(\eta^5-C_5H_5)]$ are most conveniently represented as tetragonal pyramids (below). Accordingly the carbonyl ligands can occupy either *cis* or *trans* positions in the monosubstitution products. In the i.r. spectra of these products two bands of equal intensity are indicative for a *cis* isomer, while a

considerably more intense band at lower energy is characteristic for the *trans* isomer. Because of the high mobility of the hydrido-ligand, both isomers can easily be interconverted.

(a) Photo-induced reactions of $[MH(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) with ligands L (L = N_2 , C_2H_4 , or thf) in solution. The photolysis reactions of $[MoH(CO)_3(\eta^5-C_5H_5)]$ and $[WH(CO)_3-WH(CO)_3 (\eta^{5}-C_{5}H_{5})]$ in pentane or toluene solution proceed differently.^{29b} Upon u.v. irradiation the Mo derivative forms [{Mo(CO)₃- $(\eta^{5}-C_{5}H_{5})_{2}$ and hydrogen as the main reaction products besides a little [{ $Mo(CO)_2(\eta^5-C_5H_5)$ }] and carbon monoxide. Depending on the concentration of the solution, the reaction needs 2-4 h photolysis to reach completion. The primary photoproduct upon u.v. irradiation of $[WH(CO)_3(\eta^5-C_5H_5)]$, however, is the dimeric hydrido-species $[{WH(CO)_2(\eta^5 - \eta^5 - \eta$ $(C_5H_5)_{2}$ [structure (I)] and carbon monoxide. This brown coloured new hydrido-complex has two CO bands of nearly equal intensity (1 860 and 1 930 cm⁻¹ in toluene) in the i.r. spectrum, and strongly shielded bridging hydrogen ligands in the ¹H n.m.r. spectrum $\{\delta(C_5H_5) = 6.14, \delta(W-H-W) =$ -13.24 p.p.m., J(WH) = 83.1 Hz; in [²H₆]acetone at -30 °C}. Extended photolysis (ca. 3-4 h) results in the formation of $[{W(CO)_2(\eta^5-C_5H_5)}_2]$ [structure (II)] and very little $[{W(CO)_3(\eta^5 - C_5H_5)}_2].$

In the presence of ligands L ($L = N_2$, C_2H_4 , or thf) a different type of reaction is observed. Instead of cleavage of the metal-hydrogen bond, CO substitution occurs and leads to the formation of the derivatives [MH(CO)₂L(n⁵-C₅H₅)].

However, only the complex $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ is stable enough to be isolated and fully characterised.

The photolysis of $[WH(CO)_3(\eta^5-C_5H_5)]$ in thf solutions proceeds with evolution of CO and formation of a brown solution. Monitoring of the reaction by i.r. spectroscopy shows the growth of new CO bands that are indicative of the formation of *cis* and *trans*- $[MH(CO)_2(thf)(\eta^5-C_5H_5)]$ complexes (see Table 1). Simultaneously, $[\{WH(CO)_2(\eta^5-C_5H_5)\}_2]$ is generated which exhibits two CO bands at 1 928 and 1 858 cm⁻¹. The course of the reaction can also be observed by ¹H n.m.r. spectroscopy. In this case photolysis results in a decrease in intensity of the signals of the starting material and the growth of new C₅H₅ and W–H signals that can be assigned to *cis* and *trans*- $[WH(CO)_2(thf)(\eta^5-C_5H_5)]$ (see Table 1). Another C₅H₅ signal at 6.10 and a terminal W–H signal at -13.26 p.p.m. [J(WH) = 83.5 Hz] arise from the dicarbonyl by-product, $[\{WH(CO)_2(\eta^5-C_5H_5)\}_2]$.

The photolysis of $[MoH(CO)_3(\eta^5-C_5H_5)]$ in thf gives $[\{Mo-(CO)_3(\eta^5-C_5H_5)\}_2]$ [v(CO) = 1.953 and 1.908 cm⁻¹ in thf; ¹H, δ (C_5H_5) = 5.22 p.p.m. in CDCl₃] as the principal product. With Ar bubbling through the solution, however, a mixture of products is obtained. Two products are the dimers $[\{Mo(CO)_3(\eta^5-C_5H_5)\}_2]$ and $[\{Mo(CO)_2(\eta^5-C_5H_5)\}_2]$. We assign the third product as $[MoH(CO)_2(\eta^5-C_5H_5)]_2]$. We assign the third product as $[MoH(CO)_2(\eta^5-C_5H_5)]_3$ and $[Mo^5-C_5H_5]_3]$. The complex is extremely sensitive and labile. A *trans* stereochemistry for $[MoH(CO)_2(\eta^5-C_5H_5)]_3$ seems most probable by analogy with the isolation of *cis* and *trans* isomers for $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]_3$ (see below: matrix isolation studies) whereas only a *trans* isomer could be detected for $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]_3$ (Table 1).

(b) Thermal reaction of trans- $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ and ligands L (L = N₂ or PMe₃). When nitrogen is passed through the pentane solution of trans- $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ at -30 °C, the i.r. spectra indicate a fast decrease of the parent complex (within 5 min). Simultaneously, a brown precipitate is formed. However, the generation of new CO bands could not be detected at room temperature. If a dinitrogen complex was formed the species was too labile under the reaction conditions to be observed by i.r. spectroscopy.

Trimethylphosphine reacts instantly with $[WH(CO)_2-(C_2H_4)(\eta^5-C_5H_5)]$ in pentane solutions. A yellow precipitate is formed and the i.r. spectrum of this precipitate exhibits four CO bands that are assigned to a *cis* and *trans* mixture of the known compound $[WH(CO)_2(PMe_3)(\eta^5-C_5H_5)]$.³⁰

(c) Photo-induced reaction of trans-[WH(CO)₂(C₂H₄)(η⁵-C₅H₅)] and ligands L (L = thf or CO). Though [WH(CO)₂-(C₂H₄)(η⁵-C₅H₅)] can be considered as a highly reactive intermediate in the photo-induced β-elimination of ethylene from [W(CO)₃(C₂H₅)(η⁵-C₅H₅)], u.v. light is necessary to effect the substitution of the olefin ligand by L (L = CO or thf). The photoreaction takes *ca*. 30 min for CO and *ca*. 8 h for thf, leading to [WH(CO)₃(η⁵-C₅H₅)] and trans-[WH(CO)₂(thf)(η⁵-C₅H₅)] respectively. The substitution products were characterised directly in the reaction solution by i.r., and, after removal of the solvent *in vacuo* by n.m.r. spectroscopy.

(ii) Matrix Isolation Studies.—Photolysis of $[MH(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) in CH₄ and Ar matrices at 12 K. Infrared spectra from an experiment with $[WH(CO)_3(\eta^5-C_5H_5)]$ isolated at high dilution in an Ar matrix (ca. 1 : 2 000 –1 : 5 000) are shown in Figure 1. Before photolysis the spectrum in the terminal CO stretching region contains bands at 2 032.2, 1 946.1, and 1 942.1 cm⁻¹ [Figure 1(a), Table 2]. The upper band is assigned as a symmetric A' stretch and the lower bands are assigned to overlapping A' (symmetric) and A'' (antisymmetric) bands of a C_s symmetry complex by analogy

Figure 1. Infrared spectra from an experiment with $[WH(CO)_3-(\eta^5-C_5H_5)]$ isolated at high dilution in an Ar matrix at 12 K: (a) after deposition, (b) after 50 min photolysis using $230 < \lambda < 420$ nm light, and (c) after 60 min reversal using $\lambda > 430$ nm radiation. Bands marked (*) are due to $[WH({}^{12}CO)_2({}^{13}CO)(\eta^5-C_5H_5)]$ present in natural abundance

with the bands observed in gas matrices for $[M(CO)_3R(\eta^5 C_5R'_5)]$ complexes (M = Mo or W; R = alkyl or aryl; R' = H or CH₃).^{5,29a} Irradiation of the matrix with u.v. radiation (230 < λ < 420 nm) corresponding to the electronic spectrum of $[WH(CO)_3(\eta^5 C_5H_5)]$ [Figure 2(*a*)] produced 'free 'CO (2 138.5 cm⁻¹) and two new bands at 1 967.0 and 1 881.6 cm⁻¹ [Figure 1(*b*)]. Continued photolysis resulted in the latter pair of bands and that of CO growing at the expense of the parent bands.

Irradiation with visible light (430 $< \lambda \leq$ 460 nm) caused the new bands to decrease with the simultaneous increase in intensity of the bands of $[WH(CO)_3(\eta^5-C_5H_5)]$ [Figure 1(c)]. The relative intensities of the bands at 1967.0 and 1 881.6 cm⁻¹ remained constant under a variety of photolysis conditions (time and wavelength of irradiation) indicating that they arose from a single product species. This species must be a mononuclear species because of the dilutions employed in this work. The facile reversibility of the primary step shows that the W-H linkage is retained in the product species because if cleavage of the W-H bond had occurred H atoms would have been produced and these are known to diffuse freely in gas matrices at 4-30 K.³¹ Diffusion of H atoms would have precluded reversibility. The ejection of CO in the primary photolysis with the retention of a W-H bond enables the new species to be identified as $[WH(CO)_2(\eta^5-C_5H_5)]$. This assignment was confirmed by an experiment with ¹³CO-enriched $[WH(CO)_3(\eta^5-C_5H_5)]$ (see below).

Analogous results were obtained for $[WH(CO)_3(\eta^5-C_5H_5)]$ isolated at high dilution in CH₄ matrices. Analogous results were also obtained for $[MoH(CO)_3(\eta^5-C_5H_5)]$ isolated at

	Matrix				
Complex	CH₄	Ar	N ₂	СО	5% C₂H₄-CH₄
[MoH(CO)₃(η⁵-C₅H₅)]	2 029.8	2 033.4	2 029.2	2 029.2	2 028.2
[WH(CO) ₃ (η ⁵ -C ₃ H ₃)]	1 940.5 (a) $1 940.3 f^{a}$ 2 025.5 1 020.5 (a)	1932.4 $a1948.0 \int a2032.21046(1)$	1947.2 1942.4 2029.5 1042.5	1940.7 $a1940.5 a2024.3$	1944.0 1939.3 $a2024.01024.0$
[MoH(CO) ₂ (η ⁵ -C ₅ H ₅)]	1939.5 1935.1 1963.5	1940.1 1942.1 \int^{a} 1972.4	$1942.5 \\ 1932.3 \\ c$	$\begin{array}{c} 1 \ 936.1 \\ 1 \ 931.1 \end{array} a$	1 932.5 *
$[WH(CO)_2(\eta^5-C_5H_5)]$	1 885.2 1 956.4	1 892.4 1 967.0	с	d	1 882.7 1 956.0
$[MoH(CO)_2(N_2)(\eta^5-C_5H_5)]^e$		1 881.6	1 976.1 1 912 8		18/4.5
$[WH(CO)_2(N_2)(\eta^5-C_5H_5)]^e$		_	1 972.7		
[Mo(CO) ₃ (η ⁵ -C ₅ H ₅)]'				2 008.9 1 915.5	_
[W(CO)₃(η⁵-C₅H₅)]'			-	1 908.4 ^f 1 999.3 1 900.3	
[Mo(CO) ₆]				1 985.1	
[W(CO) ₆]	_			1 979 .7	_
H ¹² CO/H ¹³ CO	_		_	1 859.1/1 817.0	
trans-[MoH(CO) ₂ (C ₂ H ₄)(η^{5} -C ₅ H ₅)]	_		_		1 974.8 1 901.3
cis -[WH(CO) ₂ (C ₂ H ₄)(η^{5} -C ₅ H ₅)]	1 987.6 1 928.5		—	1 988.7 1 931.4	1 986.2 1 927.8
trans-[WH(CO) ₂ (C ₂ H ₄)(η^{5} -C ₅ H ₅)]	1 974.2			1 979.5	1 974.0
$[Mo(CO)_2(C_2H_5)(\eta^5-C_5H_5)]$				_	1 955.0
$[W(CO)_2(C_2H_5)(\eta^5-C_5H_5)]$	1 947.8 1 861.1			1 949.1 1 862.2	1 945.3
$[WH(CO)(C_2H_4)(\eta^5-C_5H_5)]$	1 904.0				1 904.3

Table 2. Infrared band positions (cm⁻¹) observed in the terminal CO stretching region for $[MH(CO)_3(\eta^5-C_5H_5)]$ complexes (M = Mo or W) and *trans*- $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ and their photoproducts in various matrices at 12 K

^{*a*} Overlapping A' and A'' bands (see text). ^{*b*} Broad unresolved band due to mixed-matrix effect. ^{*c*} [MH(CO)₂(η^{5} -C₅H₅)] species (M = Mo or W) are not observed in N₂ matrices. ^{*d*} [MH(CO)₂(η^{5} -C₅H₅)] species (M = Mo or W) are not observed in CO matrices. ^{*e*} v(NN) (Mo) at 2 192 cm⁻¹; v(NN) (W) at 2 163.5 cm⁻¹. ^{*f*} Broad band split.

dilution in Ar and CH₄ matrices (*ca.* 1 ± 2000 to 1 ± 5000). Spectroscopic data for the new species are given in Table 2.

Photolysis of ¹³CO enriched $[WH(CO)_3(\eta^5-C_5H_5)]$ in Ar matrices at 12 K. The i.r. spectrum of ¹³CO-enriched [WH- $(CO)_3(\eta^5-C_5H_5)$] isolated at high dilution in an Ar matrix at 12 K shows bands due to the range of species [WH(¹²CO)_{3-n}- $({}^{13}\text{CO})_n(\eta^5-C_5H_5)]$ (*n* = 0-3) [Figure 3(*a*)]. This was confirmed by an energy-factored force-field analysis of the observed and calculated band positions.^{29a,32,33} A very good fit was obtained using C_s symmetry (Table 3). Irradiation of the matrix with u.v. radiation (290 $< \lambda <$ 410 nm) gave new ¹³CO-enriched product bands at 1 965.9, 1 950.1, 1 879.5, 1 854.5, and 1 837.6 cm^{-1} [Figure 3(b)]. In this case a good fit was obtained between the observed and calculated bands of a C_s W(CO)₂ fragment, *i.e.* $[WH(^{12}CO)_{2-m}(^{13}CO)_m(\eta^5-C_5H_5)]$ (*m* = 0–2) (Table 3). The photoproducts in Ar and CH₄ matrices (see above) can, therefore, be conclusively assigned as $[MH(CO)_2(\eta^5-C_5H_5)]$ species (M = Mo or W).

The observed relative intensities (I) of the two bands for $[WH(^{12}CO)_2(\eta^5-C_5H_5)]$ [I(1 965.9): I(1 879.5) (symmetric: antisymmetric) = 1:1.21] were obtained by tracing and weighing bands from spectra in absorbance mode. The ratio I_{asym}/I_{sym} (1.21:1) gave an OC-W-CO angle (θ) of *ca*. 95° in the standard expression $I_{asym}/I_{sym} = \tan^2(\theta/2).^{33}$

Photolysis of $[MH(CO)_3(\eta^5-C_5H_5)]$ (M \sim Mo or W) in N₂

matrices at 12 K. The i.r. spectrum of $[WH(CO)_3(\eta^5-C_5H_5)]$ isolated at high dilution in a N₂ matrix (*ca.* 1 : 2 000 to 1 : 5 000) is shown in Figure 4(*a*). A period of photolysis using medium energy u.v. radiation (290 < λ < 370 nm) produced new i.r. bands at 2 163.5, 2 138.0, 1 972.7, and 1 910.0 cm⁻¹, of which the band at 2 138.0 cm⁻¹ corresponds to free CO [Figure 4(*b*)]. Long-wavelength irradiation (430 < λ < 460 nm) caused little change in the intensities of the parent bands [Figure 4(*d*)] or new product bands; such long-wavelength photolysis caused reversal of the forward step in the case of [WH(CO)₂(η^5 -C₅H₅)] (see above).

The band at 2163.5 cm⁻¹ may be assigned as a N-N stretching mode of an end-on co-ordinated dinitrogen ligand by analogy with bands for $[Co(CO)(N_2)(\eta^5-C_5H_5)]$ [v(NN) at 2164.6 cm⁻¹ (N₂ matrix)],³⁴ [Mn(CO)₂(N₂)(\eta^5-C_5H_5)] [v(NN) at 2175.0 cm⁻¹ (N₂ matrix) and 2169 cm⁻¹ (n-hexane)],^{35,36} [Fe(CO)₂(N₂)(\eta^4-C_4H_4)] [v(NN) at 2206.8 cm⁻¹ (N₂ matrix)],³⁵ [Ni(CO)₃(N₂)] [v(NN) at 2266.8 cm⁻¹ (N₂ matrix)],³⁷ and [Mo(CO)₂(N₂)(CH₃)(\eta^5-C₅H₅)][v(NN) at 2190.8 cm⁻¹ (N₂ matrix)].^{29a} The bands at 1972.7 and 1910.0 cm⁻¹ may be assigned as terminal CO stretching modes. Since the product is formed with the ejection of CO (band at 2138.0 cm⁻¹), it may be identified as [WH(CO)₂(N₂)(\eta^5-C₅H₅)], cf. [Mo(CO)₂-(N₂)(CH₃)(\eta^5-C₅H₅)] [v(CO) at 1969.7 and 1913.7 cm⁻¹].^{29a} This assignment was confirmed by photolysing [WH(¹²CO)_{3-n}-

Figure 2. Ultraviolet-visible spectra from an experiment with $[WH(CO)_3(\eta^5-C_3H_5)]$ isolated at high dilution in an Ar matrix at 12 K: (a) after deposition and (b) after 50 min photolysis using $230 < \lambda < 420$ nm light

Figure 3. Infrared spectra from an experiment with ¹³CO-enriched [WH(CO)₃(η^{5} -C₃H₅)] isolated at high dilution in an Ar matrix at 12 K: (a) after deposition, (b) after 45 min photolysis using 290 < λ < 410 nm radiation, and (c) after 2 min annealing

 $({}^{13}CO)_n(\eta^5-C_5H_5)]$ (n = 0-3) in a N₂ matrix. The resulting bands were subjected to an energy-factored force-field fitting procedure (see above) and excellent agreement between observed and calculated bands was obtained for a M(CO)₂ fragment (see Table 3).

Considering the relative intensities of the CO stretching

Figure 4. Infrared spectra from an experiment with $[WH(CO)_3-(\eta^5-C_5H_5)]$ isolated at high dilution in a N₂ matrix at 12 K: (a) after deposition, (b) after 10 min photolysis with 290 < λ < 370 nm radiation, (c) after further 15 min photolysis using the same source, and (d) after reversal for 90 min using λ > 430 nm light. Bands marked (*) are due to $[WH(^{12}CO)_2(^{13}CO)(\eta^5-C_5H_5)]$ present in natural abundance

bands of $[WH(CO)_2(N_2)(\eta^5-C_5H_5)]$, which may be assigned as the symmetric (1 972.7 cm⁻¹) and antisymmetric (1 910.0 cm⁻¹) modes of a C_s symmetry W(CO)_2 fragment, an OC-W-CO bond angle (θ) can be calculated from the expression $I_{asym}/I_{sym} = \tan^2(\theta/2)$, cf. $[WH(CO)_2(\eta^5-C_5H_5)]$. The value of the OC-W-CO angle was found to be 108° which is indicative of a *trans* geometry of the CO ligands.* An alternative approach to assigning stereochemistry is *via* the calculation ³¹ of energyfactored CO interaction force constants (k_1). For $[WH(CO)_2-(N_2)(\eta^5-C_5H_5)]$ this gave a value of 49.2 N m⁻¹ for k_1 and comparison of this value with k_1 values for $[WH(CO)_3(\eta^5-C_5H_5)]$ ($k_{12} = k_{cis} = 43.9$ N m⁻¹ and $k_{23} = k_{trans} = 51.9$ N m⁻¹; Table 3) confirms the structure of the new species as *trans*- $[WH(CO)_2(N_2)(\eta^5-C_5H_5)]$.

Analogous results were obtained with $[MoH(CO)_3(\eta^5-C_5H_5)]$ isolated at high dilution in N₂ matrices except that for this complex the forward photolysis to give $[MoH(CO)_2-(N_2)(\eta^5-C_5H_5)]$ could be reversed. Values of the OC-Mo-CO bond angle (θ) of *ca.* 102° and the energy-factored CO-inter-

* Burdett ³⁸ has concluded that for metal carbonyls containing other ligands, the use of carbonyl band intensities to calculate bond angles is not universally applicable. The method can only be a legitimate one in those molecules where vibrational coupling between the M⁻X and CO oscillators is small, *e.g.* [Mn(CO)₅Br]. Where coupling is strong, the errors involved in the method may be unacceptable, *e.g.* [Mo(CO)₅(N₂)]. In our experience, however, where v(CO) and v(NN) or v(CO) and v(NO) bands are separated by *ca.* 200 cm⁻¹, bond angle calculations and energy-factored force-field fittings of bands of ¹³CO-enriched species can be satisfactorily carried out without recourse to including perturbations from the N₂ and NO ligands, *e.g.* [Co(CO)(N₂)(n⁵-C₅H₅)],³⁴ [Mo(CO)₂-(N₂)(CH₃)(n⁵-C₅H₅)],³⁹ and [Mn(CO)(NO);(NO^{*})] (where NO^{*} denotes a one-electron donor nitrosyl ligand).³⁹

Table 3. Observed and calculated band positions (cm⁻¹) of terminal CO bands in an experiment with a ¹³CO-enriched sample of $[WH(CO)_3(\eta^5-C_5H_5)]$ in various matrices at 12 K

Complex		
(symmetry point group)	Observed	Calculated
$[WH(^{12}CO)_3(\eta^5-C_5H_5)]^a$ (G) (A')	2 029.6	2 028.9
$(C_s) \left\{ A' + A' \right\}$	1 942.0	1 941.1
$[WH(^{12}CO)_2(^{13}CO)(\eta^5-C_5H_5)]$ (A'	2 020.0	2 020.5
$(C_s)^b \langle A''$	1 941.2 °	1 941.1
A'	1 906.0	1 905.9
(<i>A</i>	2 016.0	2 016.7
$(C_1)^d \langle A$	1 941.2 °	1 941.1
(A	1 908.6	1 909.4
$[WH(^{12}CO)(^{13}CO)_2(\eta^{5}-C_{5}H_{5})]$ (A	2 005.2	2 006.1
$(C_1)^e \langle A$	1 920.8	1 919.6
A	1 899.0	1 897.9
(A')	1 999.7	2 001.0
$(C_s)^{f} \left\{ A' \right\}$	g	1 924.4
(<i>A</i> "	1 897.0	1 897.9
$[WH(^{13}CO)_{3}(\eta^{3}-C_{5}H_{5})] \qquad (C_{4}) \begin{cases} A' \\ A' \end{cases}$	1 983.4	1 983.9
(a' + A')	1 897.1	1 897.9
$[WH(^{12}CO)_2(\eta^3 - C_5H_5)]^n$ (C,) $\{A'_{\mu\nu}\}$	1 965.9	1 966.0
	1 879.5	1 879.7
$[WH(^{12}CO)(^{13}CO)(\eta^{3}-C_{5}H_{5})]$ (C ₁) A	1 950.1	1 949.2
	1 854.5	1 853.8
$[WH(^{13}CU)_{2}(\eta^{3}-C_{5}H_{5})]$ (C _s) $\{A_{4''}\}$	1 977 (1 922.3
(A)	1 837.0	1 837.9
$[WH(^{-CO})_2(N_2)(I^{-C_5}H_5)] \land (C_s) \Big\{ \begin{array}{c} A \\ A'' \end{array} \Big\}$	1 9/2./	1 9/2.7
$[WH^{12}CO)^{13}CO)(N)(n^{5}CH_{2})]$ (A	1 910.0	1 910.0
$[WH(CO)(CO)(H_2)(1-CSH_3)] = \int A$	1 887 3	1 887 0
$[WH(^{13}CO),(N_{*})(n^{5}-C_{*}H_{*})]$ (4'	1 928 6	1 978 9
$[(C_s)]_{\mathcal{A}''}$	1 866 4	1 867 6
$[W(^{12}CO)_{2}(m^{5}-C_{2}H_{2})]^{j}$	1 999 7	1 999 3
$(C_{3v}) \begin{cases} m_1 \\ E \end{cases}$	1 899.5	1 898.6
$[W(^{12}CO)_{3}(^{13}CO)(n^{5}-C_{4}H_{4})]^{*}$	1 987.8	1 988.0
$(C_{i}) \{ A'' \}$	1 899.2	1 898.7
(A')	1 866.7	1 867.0
$[W(^{12}CO)(^{13}CO)_2(\eta^5 - C_5H_5)]^{-1}$ (A'	1 974.5	1 974.3
$(C_s) \left\{ A' \right\}$	1 880.5	1 879.9
(A"	k	1 856.5
$[W(^{13}CO)_{3}(\eta^{5}-C_{5}H_{5})]^{-1}$	1 954.4	1 954.8
$(C_{3v}) \setminus E$	1 855.5	1 856.4
A Defined anongy featoned force constant	to for N	

^a Refined energy-factored force constants for $[WH(CO)_3(\eta^2-C_5H_5)]$: $K_1 = 1559.3$, $K_2 = 1574.1$, $k_{12} = 43.9$, and $k_{23} = 51.9$ 2

N m⁻¹ as defined by the numbering 1-W-H (1 \neq 2 = 3). ^b ¹³CO

in position 1. ^c Band obscured by parent molecule band at 1 942.0 cm⁻¹. ^d ¹³CO in position 2. ^e ¹²CO in position 2. ^f ¹²CO in position 1. ^g Band obscured by band of ¹³CO-enriched [WH(CO)₃(η^{5} -C₅H₅)] at 1 920.8 cm⁻¹. ^h Refined energy-factored force constants for [WH(CO)₂(η^{5} -C₅H₅)]: K = 1 494.5 and $k_1 = 67.0$ N m⁻¹. ⁱ Refined energy-factored force constants for trans-[WH(CO)₂(χ_2)(η^{5} -C₅H₅)]: K = 1 523.0 and $k_1 = 49.2$ N m⁻¹. For Mo complex: K = 1 527.9 and $k_1 = 49.7$ N m⁻¹. ^j Refined energy-factored force constants for [W(CO)₃(η^{5} -C₅H₅)]': K = 1 509.2 and $k_1 = 52.8$ N m⁻¹ in a mixed ¹³CO-¹²CO (25:75) matrix. ^k Band obscured by the band of [W(¹³CO)₃(η^{5} -C₅H₅)]' at 1 855.5 cm⁻¹.

action force constant $(k_1 = 49.7 \text{ N m}^{-1})$ confirmed the structure as *trans*-[MoH(CO)₂(N₂)(η⁵-C₅H₅)] (see above). Spectroscopic data for the new dinitrogen complexes are given in Table 2.

The position of the NN stretching band for *trans*-[WH- $(CO)_2(N_2)(\eta^5-C_5H_5)$] is similar to that for $[Mn(CO)_2(N_2)(\eta^5-C_5H_5)]$, which, as well as being formed in a N₂ matrix,³⁵ has been obtained by conventional preparative techniques.³⁶ It seems possible that *trans*-[WH(CO)_2(N_2)(\eta^5-C_5H_5)] might

exist as a stable complex at ambient temperatures. The band for *trans*-[MoH(CO)₂(N₂)(η^5 -C₅H₅)] (2 192.0 cm⁻¹), however, is at much higher wavenumber, *cf*. [Fe(N₂)(CO)₂(η^4 -C₄H₄)] [v(NN) at 2 206.8 cm⁻¹],³⁵ which is indicative of a weaker Mo⁻N bond than for W. An attempt ⁴⁰ to prepare [Fe(CO)₂-(N₂)(η^4 -C₄H₄)], following the successful matrix isolation experiments, led to the isolation of the novel iron dimer (III). For the [MH(CO)₃(η^5 -C₅H₅)] complexes (M = Mo or W) although a reaction took place in the presence of N₂, no new N₂ complexes could be isolated (see above).

Photolysis of $[MH(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) in CO matrices at 12 K. The i.r. spectrum of $[MoH(CO)_3(\eta^5-C_5H_5)]$ isolated at high dilution in a CO matrix is shown in Figure 5(a). Irradiation of the matrix with u.v. light (230 < λ < 390 nm) resulted in the growth of four new bands at 2 008.9, 1 915.5, 1 908.4, and 1 859.1 cm⁻¹ [Figure 5(b)]. Longer times of irradiation with u.v. light caused the four bands to grow, together with an additional band at 1 985.1 cm⁻¹ [Figure 5(c), (d)]. Photolysis with long-wavelength radiation (λ > 430 nm) produced a decrease in the bands at 2 008.9, 1 915.5, 1 908.4, and 1 859.1 cm⁻¹ and an increase in the bands of [MoH(CO)₃-(η^5 -C₅H₅)] [Figure 5(e)]. The band at 1 985.1 cm⁻¹, however, did not show a change in relative intensity on long-wavelength irradiation.

By analogy with the hydrides [CoH(CO)₄]²⁰ and [MH(CO)₅] $(M = Mn \text{ or } Re)^{19}$ which give the radicals HCO' and [Co-(CO)₄]' and HCO' and [M(CO)₅]' respectively on photolysis at 4-20 K, it might be expected that $[MoH(CO)_3(n^5-C_5H_5)]$ would give HCO' and $[Mo(CO)_3(\eta^5-C_5H_5)]$. Indeed, the band at 1 859.1 cm⁻¹, which shows the appropriate ¹³C shift in ¹³COdoped matrices, corresponds to the band position for HCO. reported previously (1 860 cm⁻¹).^{19,20} The bands at 2 008.9, 1 915.5, and 1 908.4 cm⁻¹ may then be assigned to [Mo(CO)₃- $(\eta^5-C_5H_5)$] with C_{3v} local symmetry for the Mo(CO)₃ fragment. This was confirmed by a study of $[MH(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) in mixed ¹²CO-¹³CO matrices. The resulting band patterns were subjected to an energy-factored forcefield fitting procedure (see above) and satisfactory agreement between observed and calculated bands for a C_{3v} symmetry M(CO)₃ fragment was obtained (Table 3), *i.e.* [M(¹²CO)_{3-n}- $({}^{13}\text{CO})_n(\eta^5 - C_5H_5)] \cdot (n = 0 - 3).^{41}$

The remaining band at 1 985.1 cm⁻¹ corresponds exactly with the band position of $[Mo(CO)_6]$ isolated at high dilution in a CO matrix, *i.e.* long irradiation times with u.v. light result in dissociation of the η^5 -C₅H₅ ligand. A precedent for this is the conversion of $[Ni(NO)(\eta^5-C_5H_5)]$ to $[Ni(CO)_4]$ by photolysis in a CO matrix at 20 K.⁴²

Similar results were obtained with $[WH(CO)_3(\eta^5-C_5H_5)]$ isolated at high dilution in CO matrices. Interestingly, neither the Mo nor W complexes gave any indication of the formation of $[MH(CO)_2(\eta^5-C_5H_5)]$ species as was found in CH₄ and Ar matrices. Spectroscopic data for the new species formed in CO matrices are given in Table 2.

Photolysis of $[MH(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) in 5% C₂H₄-doped CH₄ matrices at 12 K. Infrared spectra from an experiment with $[WH(CO)_3(\eta^5-C_5H_5)]$ isolated at high dilution in a 5% C₂H₄-CH₄ matrix are shown in Figure 6. Before photolysis the spectrum shows two broadened bands (2 024.0 and 1 932.5 cm⁻¹) [Figure 6(a)] whereas in pure Ar,

Figure 5. Infrared spectra from an experiment with $[MoH(CO)_3 - (\eta^5 - C_5H_5)]$ isolated at high dilution in a CO matrix at 12 K: (*a*) after deposition, (*b*) after 15 min photolysis using $230 < \lambda < 390$ nm radiation, (*c*) after 30 min further photolysis using the same source, (*d*) after further 30 min further photolysis using the same source, (*e*) after 30 min reversal using $\lambda > 430$ nm radiation, and (*f*) after annealing to *ca*. 30 K for 2 min. Bands marked (*) are due to $[MoH(^{12}CO)_2(^{13}CO)(\eta^5 - C_5H_5)]$ present in natural abundance, those marked (†) to ^{13}CO , and that marked (‡) is assigned to the HCO-radical and is expanded $\times 5$

 N_2 , and CO matrices sharper bands are observed together with a splitting of the lower wavenumber band [Figures 1(*a*), 4(*a*), and 5(*a*)]. This band broadening is commonly experienced with 'mixed' matrices and does not imply a lack of solute molecule isolation.

Irradiation of the matrices with medium-energy u.v. radiation (290 $\leq \lambda \leq$ 370 nm) produced new terminal CO stretching i.r. bands at 1 956.0 and 1 874.5 cm⁻¹ [Figure 6(*b*)]. Longer irradiation times with the same radiation resulted in the appearance and growth of bands at 1 986.2, 1 974.0, 1 945.3, 1 927.8, 1 897.5, and 1 859.3 cm⁻¹ [Figure 6(*c*)].

Figure 6. Infrared spectra from an experiment with $[WH(CO)_3-(\eta^5-C_3H_5)]$ isolated at high dilution in a 5% C_2H_4 -doped CH₄ matrix at 12 K: (a) after deposition, (b) after 3 min photolysis using 290 < λ < 370 nm radiation, (c) after further 15 min photolysis using the same source, (d) after 90 min photolysis using λ > 430 nm radiation, (e) after 15 min further photolysis using u.v. radiation (290 < λ < 370 nm), and (f) after further 30 min photolysis using u.v. radiation (290 < λ < 370 nm), and (f) after further 30 min photolysis using visible light (λ > 430 nm). Bands marked (*) are due to C_2H_4 in the matrix, those marked (†) to $[WH(CO)_2(\eta^5-C_5H_5)]$, those marked ($\frac{1}{2}$) to *trans*-[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)], and those marked (¶) to [W(CO)_2(C_2H_5)(\eta^5-C_5H_5)] (see text)

Prolonged photolysis with the same energy showed that the bands at 1 956.0, 1 945.3, 1 874.5, and 1 859.3 cm⁻¹ increase more markedly than the other new bands while the bands of [WH(CO)₃(η^5 -C₅H₅)] continue to decrease. Irradiation with long-wavelength radiation ($\lambda > 430$ nm) caused the bands at 1 986.2, 1 974.0, 1 927.8, and 1 897.5 cm⁻¹ to increase dramatically while other bands decreased [Figure 6(*d*)]. In these photolyses it was found that the lower band of [WH(CO)₃-(η^5 -C₅H₅)] decreased more slowly than the upper band, indicating the overlapping growth of a new product band with the lower band.

Comparison of the band positions with those observed on photolysis of $[WH(CO)_3(\eta^5-C_5H_5)]$ in CH₄ matrices (see above), on photolysis of $[W(CO)_3(C_2H_5)(\eta^5-C_5H_5)]$ in CH₄ matrices,⁵ and deposition of an authentic sample of [WH- $(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ in a CH₄ matrix (see below), enabled a complete assignment to be made for all the new bands. The species observed were $[WH(CO)_2(\eta^5-C_5H_5)]$ (1 956.0 and 1 874.5 cm⁻¹), $[W(CO)_2(C_2H_5)(\eta^5-C_5H_5)]$ (1 945.3 and 1 859.3 cm⁻¹), cis- $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ (1 946.2 and 1 927.8 cm⁻¹), and trans- $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ (1 974.0 and 1 897.5 cm⁻¹). It is notable that the rate of formation of the cis and trans isomers of $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ depends on the rate of formation of the 16-electron species $[WH(CO)_2 (\eta^5-C_5H_5)]$ and $[W(CO)_2(C_2H_5)(\eta^5-C_5H_5)]$ and these in turn are formed at a rate which is a function of the radiation used. This is illustrated in Figure 6(*e*) and (*f*), where photolysis with visible light ($\lambda > 430$ nm) causes the bands for $[WH(CO)_3 - (\eta^5-C_5H_5)]$ and for the ethylene complexes $[WH(CO)_2(C_2H_4) - (\eta^5-C_5H_5)]$ to grow whereas irradiation with u.v. light results in the formation of the 16-electron species $[WH(CO)_2(\eta^5-C_5H_5)]$ and $[W(CO)_2(C_2H_5)(\eta^5-C_5H_5)]$.

Ultimately, prolonged photolysis produces a single new band at 1 904.3 cm⁻¹ which was also observed on photolysis of $[W(CO)_3(C_2H_5)(\eta^5-C_5H_5)]$ and *trans*- $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ (see below). This band is tentatively assigned to the 16-electron $[WH(CO)(C_2H_4)(\eta^5-C_5H_5)]$ species.

Analogous results were obtained with $[MoH(CO)_3(\eta^5-C_5H_5)]$ isolated at high dilution in 5% C_2H_4 -CH₄ doped matrices with the exception that only the *trans* isomer was observed for Mo whereas both *cis*- and *trans*-[WH(CO)₂-(C₂H₄)(η^5 -C₅H₅)] were observed for W. Spectroscopic data for the new species are presented in Table 2. It is important to note that all the intermediates in this photoreaction are also generated when the ethyl derivatives $[M(CO)_3(C_2H_5)(\eta^5-C_5H_5)]^{\bullet}$ (M = Mo or W) are photolysed in CH₄ and CO matrices at 12 K.⁵

Photolysis of trans-[WH(CO)₂(C₂H₄)(η^5 -C₅H₅)] in CH₄ and CO matrices at 12 K. The i.r. spectrum produced on cocondensing [WH(CO)₂(C₂H₄)(η^5 -C₅H₅)] with an excess of CH₄ at 12 K shows *two* bands at 1 974.3 and 1 897.2 cm⁻¹ in addition to bands arising from [WH(CO)₃(η^5 -C₅H₅)] and [W(CO)₃(C₂H₅)(η^5 -C₅H₅)] present as impurities [Figure 7(*a*)]. The bands at 1 974.3 and 1 897.2 cm⁻¹ correspond well with the i.r. bands in solution where a *trans* structure has been deduced on the basis of i.r. and n.m.r. spectroscopy (Table 1). Tracing and weighing the terminal CO stretching bands, from spectra recorded in absorbance mode, gave ³³ a OC-W-CO bond angle (θ) of *ca*. 112° (see above).

Photolysis with medium-energy radiation (310 $\leq \lambda \leq$ 370 nm) resulted in the formation of new bands at 1987.6, 1 947.8, 1 928.5, and 1 861.1 cm⁻¹ [Figure 7(b)]. Irradiation with visible light ($\lambda > 430$ nm) caused the bands at 1 947.8 and 1 861.1 cm⁻¹ to decrease while the other two bands at 1 987.6 and 1 928.5 cm⁻¹ increased [Figure 7(c)]. Irradiation for a longer time with medium-energy radiation (310 $< \lambda <$ 370 nm) produced a significant increase in the bands at 1 947.8 and 1 861.1 cm⁻¹ at the expense of the parent molecule bands [Figure 7(d)]. Irradiation with visible light ($\lambda > 430$ nm) confirmed that the two sets of bands at (i) 1 947.8 and 1 861.1 and (ii) 1 987.6 and 1 928.5 cm⁻¹ are due to two different species [Figure 7(e)] which are linked together in a reversible process (i) \rightarrow (ii). Longer photolysis times with higher energy radiation (290 $< \lambda < 370$ nm) produced a single new intense band at 1 904.0 cm⁻¹ together with a band due to free CO at 2 138 cm⁻¹.

By comparison with the species produced on photolysis of $[W(CO)_3(C_2H_5)(\eta^5-C_5H_5)]^5$ the bands at 1 947.8 and 1 861.1 cm⁻¹ may be assigned to $[W(CO)_2(C_2H_5)(\eta^5-C_5H_5)]$ and those at 1 987.6 and 1 928.5 cm⁻¹ may be assigned to *cis*- $[WH(CO)_2-(C_2H_4)(\eta^5-C_5H_5)]$. Two possibilities exist for the band at 1 904.0 cm⁻¹: the 14-electron species $[W(CO)(C_2H_5)(\eta^5-C_5H_5)]$ or 16-electron species $[WH(CO)(C_2H_4)(\eta^5-C_5H_5)]$. The former contains an ethyl group which might be expected to undergo β -elimination to relieve the electronic unsaturation. Therefore, the band at 1 904.0 cm⁻¹ is assigned to the 16-electron species $[WH(CO)(C_2H_5)(\eta^5-C_5H_5)]$.

In CO matrices analogous products were observed with the differences that on extended photolysis the final product was $[WH(CO)_3(\eta^5-C_5H_5)]$; no band was seen for $[WH(CO)-(C_2H_4)(\eta^5-C_5H_5)]$.

Figure 7. Infrared spectra from an experiment with *trans*-[WH-(CO)₂(C₂H₄)(η^5 -C₅H₅)] isolated at high dilution in a CH₄ matrix at 12 K: (a) after deposition, (b) after 10 min photolysis using 310 < λ < 370 nm radiation, (c) after 90 min photolysis using visible light (λ > 430 nm), (d) after further 60 min photolysis using 310 < λ < 370 nm radiation, and (e) after further 30 min photolysis using 310 < λ < 370 nm radiation, and (e) after further 30 min photolysis using 310 < λ < 370 nm radiation, and (e) after further 30 min photolysis using visible light (λ > 430 nm). Bands marked (*) are due to [W(CO)₃(C₂H₃)(η^5 -C₅H₅)] and those marked (†) are due to [WH(CO)₃(η^5 -C₅H₅)] present as decomposition impurities. Product bands marked (\$) to [W(CO)₂(C₂H₃)(η^5 -C₅H₅)], those marked (§) to [W(CO)₂(C₂H₃)(η^5 -C₅H₅)], and that marked (¶) to [WH(CO)(C₂H₄)(η^5 -C₅H₅)] (see text)

Discussion

The combined investigation of photolysis studies in the matrix and in solution represents an excellent approach to identify reaction pathways for transition metal carbonyl complexes because the patterns of the CO bands in the i.r. spectra can provide detailed information about the number, the nature, and the relative orientation of carbonyl ligands in the various products. Since the pioneering work of Strohmeier⁴³ it is well known ¹⁴ that photo-excited carbonyl complexes can lose one or even more CO ligands, generating highly reactive unsaturated fragments. The carbonyl-hydrido-complexes [MH-(CO)₃(n⁵-C₅H₅)] (M = Mo or W) and [WH(CO)₂(C₂H₄)(n⁵-

Scheme 1. (i) CH₄, Ar; (ii) hv (230 < λ < 420 nm); (iii) hv (430 < λ < 460 nm); (iv) N₂; (v) hv (290 < λ < 370 nm); (vi) CO; (vii) hv (230 < λ < 390 nm)

 C_5H_5)] represent attractive models for photochemical studies because not only the carbonyl ligands but also the hydridoligands can be considered to be photolabile. The photoreactions of $[MH(CO)_3(\eta^5-C_5H_5)]$ in frozen gas matrices (Ar, CH₄, N₂, and CO) are summarised in Scheme 1.

The primary process in the photolysis reaction of [MH- $(CO)_3(\eta^5-C_5H_5)$] in different gas matrices (Ar, CH₄, and N₂) is the dissociative loss of one CO ligand and the formation of the unsaturated fragment $[MH(CO)_2(\eta^5-C_5H_5)]$. This highly reactive species can be characterised by i.r. spectroscopy in CH₄ and Ar matrices. Rapid ¹³CO exchange during the photolysis of $[MH(^{12}CO)_3(\eta^5-C_5H_5)]$ complexes (M = Mo or W) in ¹³CO-doped matrices at 12 K, leading to [MH(¹²CO)_{3-n}- $({}^{13}\text{CO})_n(\eta^5-C_5H_5)]$ (n = 1, 2, and ultimately 3), confirms that photo-induced dissociation and exchange of CO ligands is taking place in matrices at low temperature and will also be taking place during irradiations in solution. In matrices with donor capability, e.g. N_2 and C_2H_4 , the 16-electron species $[MH(CO)_2(\eta^5-C_5H_5)]$ (M = Mo or W) react very efficiently to give the corresponding 1: 1 adducts (see below). However, this does not mean that all these derivatives can be isolated from solution. The solution studies, especially the results from the photolysis of $[WH(CO)_3(\eta^5-C_5H_5)]$, suggest that $[{MH(CO)_2} (\eta^5 - C_5 H_5)_{2}$ complexes are either formed by direct dimerisation of photochemically generated 16-electron species [MH(CO)₂- $(\eta^5-C_5H_5)$] or by the reaction of these fragments with the starting material with the ejection of one CO ligand. The dimeric hydrido-complexes $[{MH(CO)_2(\eta^5-C_5H_5)}_2]$ can lose H₂ reversibly upon u.v. irradiation, forming [{M(CO)₂(η^{5} - C_5H_5]₂]. This reaction pathway has been clearly demonstrated for $[{MoH(CO)_2(\eta^5-C_5Me_5)}_2]$ [reaction (1)]. Depending on

$$[\{MoH(CO)_{2}(\eta^{5}-C_{5}Me_{5})\}_{2}] \xrightarrow{h_{v}} [\{Mo(CO)_{2}(\eta^{5}-C_{5}Me_{5})\}_{2}] + H_{2} \quad (1)$$

the concentration of free H_2 the equilibrium can be pushed to

the right or left in a few minutes.^{29b} The complexes [{M(CO)₂- $(\eta^5-C_5H_5)$ }₂] (M = Mo or W) are known to add carbon monoxide in a dark reaction, forming [{M(CO)₃($\eta^5-C_5H_5$)}₂] (Scheme 2; M = Mo or W).

An alternative reaction path to CO ejection is M-H bond cleavage to give H atoms and the radicals $[M(CO)_3(\eta^5-C_5H_5)]$. (M = Mo or W). Hoffman and Brown ²⁵ have postulated that the facile thermal and photo-induced reactions of [WH(CO)₃- $(\eta^5-C_5H_5)$] with PBuⁿ₃ both proceed via radical intermediates. Some further evidence for this path could be derived from the observation that the final product, when $[MoH(CO)_3(\eta^5-C_5H_5)]$ is photolysed alone in n-pentane, is the dimer [{Mo(CO)₃(η^5 -C₅H₅)}₂]. No evidence for radicals was found in CH₄ and Ar matrices but in CO matrices a band clearly assignable to the formyl radical (HCO', 1 860 cm^{-1 20}) was observed together with terminal CO stretching bands which we assign to the radicals $[M(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W). This observation is analogous to the detection of the radicals [Mn(CO)₅] and [Co(CO)₄] on photolysis of [MnH-(CO)₅]²⁰ and [CoH(CO)₄]²¹ respectively in CO matrices at 4-20 K. In the latter case, e.s.r. was able to detect H atoms and the radical [Co(CO)₄]' in noble gas matrices. It is interesting that reaction (2) should be reversed by visible radiation.

$$[MH(CO)_{3}(\eta^{5}-C_{5}H_{5})] \xrightarrow{CO} [M(CO)_{3}(\eta^{5}-C_{5}H_{5})]^{*} + HCO^{*} (2)$$

Such radiation is known to photodissociate HCO to give H atoms ⁴⁴ and these could diffuse through the matrix and recombine with the $[M(CO)_3(\eta^5-C_5H_5)]^*$ radicals. It is not clear from the above experiments whether the first step to produce radicals consists of the photo-induced formation of the 16-electron species $[MH(CO)_2(\eta^5-C_5H_5)]$ that could undergo subsequent photo-induced M⁻H bond homolysis followed by fast uptake of one CO and formation of the radicals $[M(CO)_3-(\eta^5-C_5H_5)]^*$

Scheme 3. (i) 5% C₂H₄ in CH₄; (ii) hv, 290 < λ < 370 nm; (iii) hv, λ > 370 nm; (iv) hv, 310 < λ < 370 nm; (v) hv, λ > 430 nm

 $(\eta^{5}-C_{5}H_{5})$] (M = Mo or W), or whether the M-H bond fission occurs directly in the starting material. Both processes seem possible but certainly no evidence could be found for the presence of [MH(CO)₂($\eta^{5}-C_{5}H_{5}$)] species in CO matrices.

An alternative pathway involving the hydride ligand could be migration to the η^{5} -C₅H₅ ring to produce the 16-electron species $[M(CO)_3(\eta^4-C_5H_6)]$ (M = Mo or W) which could add a CO ligand from the matrix to give $[M(CO)_4(\eta^4-C_5H_6)]$ complexes. A precedent for hydride migration from a metal to a ring is the observation that photolysis of $[\text{ReH}(\eta^5-\text{C}_5\text{H}_5)_2]$ in a CO matrix at 12 K and in solution leads to the formation of $[Re(CO)_2(\eta^5-C_5H_5)(\eta^2-C_5H_6)]^{15,45}$ This complex is formed in a CO matrix via $[ReH(CO)(\eta^5-C_5H_5)(\eta^3-C_5H_5)]$ and $[\text{ReH}(\text{CO})_2(\eta^5-\text{C}_5\text{H}_5)(\sigma-\text{C}_5\text{H}_5)]$. If $[M(\text{CO})_4(\eta^4-\text{C}_5\text{H}_6)]$ complexes had been formed from $[MH(CO)_3(\eta^5-C_5H_5)]$ complexes (M = Mo or W) in CO matrices, bands would be expected to appear at higher wavenumbers than those of [WH(CO)₃(n⁵- C_5H_5]. This is by analogy with the formation of $[Fe(CO)_3 (CH_3)(\eta^3-C_5H_5)$] ⁴⁶ and $[Co(CO)_3(\eta^3-C_5H_5)]$ ³⁴ from $[Fe(CO)_2 (CH_3)(\eta^5-C_5H_5)$] and $[Co(CO)_2(\eta^5-C_5H_5)]$ respectively in CO matrices at 12 K and reflects the fact that increasing the number of CO ligands reduces the back-bonding for each CO ligand and this in turn strengthens the C-O bonds so that the bands are at higher wavenumbers. No such higher bands were observed but instead bands at lower wavenumbers assigned to the radicals $[M(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) were produced. That changes may occur in the ring-metal binding is evident from the observation of bands assigned to [M(CO)₆] complexes (M = Mo or W) {cf. the conversion of [Ni(NO)- $(\eta^{5}-C_{5}H_{5})$] to [Ni(CO)₄]}⁴² The conversion of [M(CO)₃(η^{5} - C_5H_5] to $[M(CO)_6]$ is hardly likely to be a one-step process but no intermediate stages could be seen.

The N-N stretching band for $[WH(CO)_2(N_2)(\eta^5-C_5H_5)]$ (2 163.5 cm⁻¹) occurs at a very similar wavenumber to those for $[Mn(CO)_2(N_2)(\eta^5-C_5H_5)]$ (2 169 cm⁻¹) ^{35,36} and $[Cr(CO)_2-(N_2)(\eta^6-C_6H_6)]$ (2 148 cm⁻¹) ⁴⁷ which have been prepared by conventional techniques as well as in N₂ matrices. The comparability of v(NN) suggests a similar metal-dinitrogen bond strength, *i.e.* that $[WH(CO)_2(N_2)(\eta^5-C_5H_5)]$ might exist as a stable complex. Attempts to isolate $[WH(CO)_2(N_2)(\eta^5-C_5H_5)]$, by bubbling N₂ through n-pentane solutions of $[WH(CO)_3(\eta^5-C_5H_5)]$ and $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ while photolysing them, were unsuccessful. A rapid decrease in intensity of the parent terminal CO stretching bands occurred but no new terminal CO stretching bands appeared. On the basis of the higher wavenumber for v(NN) of $[MoH(CO)_2(N_2)(\eta^5-C_5H_5)]$ (2 197.0 cm⁻¹) the N-N bond is stronger in this complex than in the W complex and, therefore, the metal-dinitrogen bond is predicted to be weaker.⁴⁸ An interesting feature of both Mo and W dinitrogen complexes is their *trans* stereochemistry deduced on the basis of OC-M-CO bond angles and energy-factored CO interaction force constants (see above). The stereochemistry is analogous to *trans*-[MoH(CO)₂(C₂H₄)(η⁵-C₅H₅)] in the case of Mo but not for W, where both *cis* and *trans* isomers are known in matrices at 12 K although only *trans*-[WH(CO)₂(C₂H₄)(η⁵-C₅H₅)] exists as a stable solid or in solution at low temperatures.

The photolysis of $[MH(CO)_3(\eta^5-C_5H_5)]$ (M = Mo or W) in a 5% C₂H₄-doped CH₄ matrix led to the formation of [MH- $(CO)_2(C_2H_4)(\eta^5-C_5H_5)$] complexes via $[MH(CO)_2(\eta^5-C_5H_5)]$ species. Interestingly, even this route failed to produce any cis isomer for Mo whereas both cis and trans isomers were observed for W. It is noteworthy that reversible cis trans isomerisation occurs for $[WH(CO)_2(C_2H_4)(\eta^5-C_5H_5)]$ in matrices at 12 K (Scheme 3). At 77 K Kazlauskas and Wrighton ¹¹ were only able to observe the trans isomer of [WH(CO)2- $(C_2H_4)(\eta^5-C_5H_5)$] by photolysis of $[W(CO)_3(C_2H_5)(\eta^5-C_5H_5)]$ whereas at 12 K similar photolysis⁵ produced again *cis* and trans isomers. Photolysis of $[Mo(CO)_3(C_2H_5)(\eta^5-C_5H_5)]$ gave the trans isomer at 12 and 77 K. Trimethylphosphine reacts instantly with trans-[WH(CO)₂(C_2H_4)(η^5 - C_5H_5)] in pentane solution forming a mixture of cis and trans-[WH(CO)2- $(PMe_3)(\eta^5-C_5H_5)]^{28}$ It is striking that only the olefin ligand is substituted by PMe₃ and not a carbonyl ligand. The photoinduced reaction of trans-[WH(CO)₂(C_2H_4)(η^5 - C_5H_5)] with the σ -donor thf gives only the corresponding trans-[WH(CO)₂- $(thf)(\eta^5-C_5H_5)$], indicating selective substitution of the olefin ligand without any change of the configuration. This is in striking contrast to the photolysis of $[WH(CO)_3(\eta^5-C_5H_5)]$ in thf solution where both cis and trans isomers are formed; $[WH(CO)_2(thf)(\eta^5-C_5H_5)]$ can be isolated and is stable at temperatures not higher than -20 °C.

It is noteworthy that prolonged photolysis of $[MH(CO)_3(\eta^5-C_5H_5)]$ in 5% C_2H_4 -doped CH₄ matrices leads to the production of the 16-electron co-ordinatively unsaturated species [M-(CO)_2(C_2H_5)(\eta^5-C_5H_5)] (M = Mo or W; Scheme 3). This

entails substitution of a CO by C_2H_4 and then insertion of the co-ordinated C_2H_4 into a M-H bond. Exactly these steps are proposed in the mechanism of the hydroformylation reaction.^{6,49} This is the *first time* intermediates corresponding to proposed insertion processes have been observed.⁵⁰

Acknowledgements

The Southampton group thanks the University of Lebanon Faculty of Science for a studentship (to K. A. M.) and the S.E.R.C. for support to (A. J. R.). The Bayreuth group appreciates the financial support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- 1 Y. Matsui and M. Orchin, J. Organomet. Chem., 1982, 236, 381.
- 2 P. Renaut, G. Tainturier, and B. Gautheron, J. Organomet. Chem., 1978, 150, C9.
- 3 F. W. S. Benfield and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1974, 1324.
- 4 M. L. H. Green and R. Mahtab, J. Chem. Soc., Dalton Trans., 1979, 262.
- 5 K. A. Mahmoud, A. J. Rest, H. G. Alt, M. E. Eichner, and B. M. Jansen, preceding paper.
- 6 M. Orchin, Acc. Chem. Res., 1981, 14, 259.
- 7 J. Halpern, Inorg. Chim. Acta, 1981, 50, 11.
- 8 E. L. Muetterties, Inorg. Chim. Acta, 1981, 50, 1.
- 9 D. L. Reger and E. C. Culbertson, J. Am. Chem. Soc., 1976, 98, 2789.
- 10 H. G. Alt and M. E. Eichner, Angew. Chem., Int. Ed. Engl., 1982, 21, 78.
- 11 R. J. Kazlauskas and M. S Wrighton, J. Am. Chem. Soc., 1980, 102, 1727.
- 12 R. Bau, R. G. Teller, S. W. Kirtley, and T. F. Koetzle, Acc. Chem. Res., 1979, 12, 176.
- 13 J. A. Connor, M. T. Zafarani-Moattar, J. Bickerton, N. I. El Saied, S. Suradi, R. Carson, G. Al Takhin, and H. A. Skinner, Organometallics, 1982, 1, 1166.
- 14 G. L. Geoffroy and M. S. Wrighton, 'Organometallic Photochemistry,' Academic Press, London, 1979.
- 15 J. Chetwynd-Talbot, P. Grebenik, and R. N. Perutz, J. Chem. Soc., Chem. Commun., 1981, 452.
- 16 C. Giannotti and M. L. H. Green, J. Chem. Soc., Chem. Commun., 1972, 1114.
- 17 K. Elmitt, M. L. H. Green, R. A. Forder, I. Jefferson, and K. Prout, J. Chem. Soc., Chem. Commun., 1974, 747.
- 18 L. Farrugia and M. L. H. Green, J. Chem. Soc., Chem. Commun., 1975, 416.
- 19 G. L. Geoffroy and M. G. Bradley, J. Organomet. Chem., 1977, 134, C27.

- 20 S. P. Church, M. Poliakoff, J. A. Timney, and J. J. Turner, J. Am. Chem. Soc., 1981, 103, 7515.
- 21 R. L. Sweany, Inorg. Chem., 1980, 19, 3512; 1982, 21, 752.
- 22 G. L. Geoffroy and R. Pierantozzi, J. Am. Chem. Soc., 1976, 98, 8054.
- 23 G. L. Geoffroy and M. G. Bradley, Inorg. Chem., 1977, 16, 744.
- 24 J. K. Hoyano and W. A. G. Graham, J. Am. Chem. Soc., 1982, 104, 3722.
- 25 N. W. Hoffman and T. L. Brown, Inorg. Chem., 1978, 17, 613.
- 26 E. O. Fischer, W. Hafner, and H. O. Stahl, Z. Anorg. Allg. Chem., 1955, 282, 47.
- 27 E. O. Fischer, Inorg. Synth., 1963, 7, 136.
- 28 R. B. King, Organomet. Synth., 1965, 1, 156.
- 29 (a) K. A. Mahmoud, R. Narayanaswamy, and A. J. Rest, J. Chem. Soc., Dalton Trans., 1981, 2199; (b) H. G. Alt, K. A. Mahmoud, and A. J. Rest, Angew. Chem., Int. Ed. Engl., 1983, 22, 544.
- 30 P. Kalck and R. Poilblanc, J. Organomet. Chem., 1969, 19, 115; H. G. Alt and M. E. Eichner, J. Organomet. Chem., 1981, 212, 397.
- 31 B. Mayer, 'Low Temperature Spectroscopy,' Elsevier, New York, 1970.
- 32 D. J. Taylor, Ph.D. Thesis, University of Southampton, 1980.
- 33 P. S. Braterman, 'Metal Carbonyl Spectra,' Academic Press, London, 1975.
- 34 O. Crichton, A. J. Rest, and D. J. Taylor, J. Chem. Soc., Dalton Trans., 1980, 167.
- 35 A. J. Rest, J. R. Sodeau, and D. J. Taylor, J. Chem. Soc., Dalton Trans., 1978, 651.
- 36 D. Sellman, Angew. Chem., Int. Ed. Engl., 1971, 10, 919.
- 37 A. J. Rest, J. Organomet. Chem., 1972, 40, C76.
- 38 J. K. Burdett, Inorg. Chem., 1981, 20, 2607.
- 39 O. Crichton and A. J. Rest, J. Chem. Soc., Dalton Trans., 1978, 202.
- 40 I. Fischler, K. Hildenbrand, and E. A. Koerner von Gustorf, Angew. Chem., Int. Ed. Engl., 1975, 14, 54.
- 41 H. G. Alt, K. A. Mahmoud, and A. J. Rest, J. Organomet. Chem., 1983, 243, C5.
- 42 O. Crichton and A. J. Rest, J. Chem. Soc., Dalton Trans., 1977, 986.
- 43 W. Strohmeier, Angew. Chem., Int. Ed. Engl., 1964, 3, 730.
- 44 M. E. Jacox, J. Mol. Spectrosc., 1973, 47, 1418.
- 45 J. Chetwynd-Talbot, P. Grebenik, R. N. Perutz, and M. H. A. Powell, *Inorg. Chem.*, 1983, 22, 1675.
- 46 D. J. Fettes, R. Narayanaswamy, and A. J. Rest, J. Chem. Soc., Dalton Trans., 1981, 2311.
- 47 D. Sellmann and G. Maisel, Z. Naturforsch., Teil B, 1972, 27, 465.
- 48 N. J. Fitzpatrick, A. J. Rest, and D. J. Taylor, J. Chem. Soc., Dalton Trans., 1979, 351.
- 49 C. M. Masters, 'Homogeneous Transition-Metal Catalysis,' Chapman and Hall, London, 1981.
- 50 H. G. Alt, K. A. Mahmoud, and A. J. Rest, J. Organomet. Chem., 1983, 246, C37.

Received 29th December 1982; Paper 2/2160